Experimental Study on Liquid Film Thickness of Annular Flow in Microchannels

نویسندگان

  • Yuki Yoshinaga
  • Hao Peng
  • Chaobin Dang
  • Eiji Hihara
  • Yuki YOSHINAGA
  • Hao PENG
  • Chaobin DANG
  • Eiji HIHARA
چکیده

Many studies were carried out to investigate the flow and heat transfer characteristics of two-phase flow in microchannels because of its advantage in improving heat exchange performance, it has been well revealed that liquid film thickness and flow pattern play important roles in determining the heat transfer characteristics. However, these data is still limited to understanding properties of two-phase flow in microchannels because both the effect of tube size, geometry and physical property of working fluids have be taken into account. In this study, visual observation of flow pattern by using a high-speed camera and direct measurement of liquid film thickness by using a laser displacement meter for annular flow inside microchannels with inner diameter of 0.5 mm, 1 mm and 2 mm were conducted. 5 fluids with different surface tension and viscosity (water, ethanol, FC72, KF96L-0.65cs, KF-96L-2cs) were selected to investigate the effect of physical properties on the flow pattern and liquid film thickness. Experimental results were compared with numerical simulation model results to provide better understanding of two phase flow and heat transfer characteristics at various tube scales and working fluid physical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFD Simulation of a Wetted-Wall Column for Natural Gas Sweetening ‎Using DEA Solution

Natural gas usually contains significant amounts of acid gases when it is extracted from underground reservoirs. Therefore, it must be treated by appropriate processes to remove these acidic components. In this study, the simultaneous absorption of carbon dioxide and hydrogen sulfide from natural gas into diethanol amine solution was simulated using CFD. Absorption process was performed in a we...

متن کامل

Effect of Liquid-Vapor Phase Distribution on the Heat Transfer Mechanisms during Flow Boiling in Minichannels and Microchannels

Heat transfer during flow boiling in minichannels and microchannels is intimately linked to the liquid-vapor phase distribution in the channels. The vapor phase exists as nucleating bubbles, dispersed bubbles, elongated bubbles, an annular core, or all vapor flow completely filling the channel. Similarly, the liquid can exist as bulk liquid, slugs, thin film on the heated wall, or dispersed dro...

متن کامل

Experimental and theoretical study of the gas -

Annular gas-liquid two phase flow is widely encountered in the nuclear industry. Various combinations of techniques have been employed in annular gas-liquid two phase flows to measure the flow parameters (e.g. liquid film thickness, gas volume fraction and the phase flow rates). One of the most useful techniques which has proven attractive for many multiphase flow applications is the electrical...

متن کامل

Liquid Film Thickness Estimation using Electrical Capacitance Tomography

In air/oil lubrication systems, the flow parameters, e.g., flow pattern, liquid film thickness, and air/oil flow rate, are of great importance to the transportation efficiency. In most cases, the on-going two-phase flow is annular flow with the oil moving along the tube wall and the air travelling at high speed in the center. This usually results in the formation of a thin oil film, the thickne...

متن کامل

Flow regime-based modeling of heat transfer and pressure drop in microchannel flow boiling

Local heat transfer coefficients and pressure drops during boiling of the dielectric liquid fluorinert FC-77 in parallel microchannels were experimentally investigated in recent work by the authors. Detailed visualizations of the corresponding two-phase flow regimes were performed as a function of a wide range of operational and geometric parameters. A new transition criterion was developed for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014